- Flexible production
- Linking Physical-Virtual
- Autonomous Production
- Predictive Management
- Knowledge Sharing
- Zero Waste
- Zero Defect
Self-Diagnosis, Optimization, Organization
En el desarrollo de proyectos debe aplicarse un acercamiento que contemple tanto a los expertos de datos como también a los expertos del dominio, es decir del tema en el que se está trabajando.
Deploying industrial data driven projects
A.-Problem? Understand the concept and ptoblem objective from domain point of view
B.-Inputs - Outputs?
B.1.-Measurements (Really? How?)
B.2.-Relation with results
B.3.-Output parametres which match objectives
B.4.-Iterative and tireless process
C.-Data Exploration
C.1.-Graphing
C.2.-Strage things (always are there)
C.3.-Meetings to clarify doubts
C.4.-Propose changes / improvements in the structure of the data
C.5.-Homogenize the data
C.6.-Do we have enough data, samples?
D.-Data Processing - Data Cleaning, Feature engineering
D.1.-Time series? Batch?
D.2.-Noise
D.3.-Interest regions
D.4.-Data fusion?
D.5.-Metrics for new models
D.6.-PCA, PLS?
D.7.-Graphical representation
E.Data Modelling
E.1.-Classifier? Regressor? Optimizer? Anormally detector? ...
E.2.-Test framework
E.3.-Test data representations
E.4.-Initial algorithms selection
E.5.-Debugging
E.6.-Improvements, statistics, etc
E.7.-If they do not work
E.8.-Important: Logic of the results. Distrust from excellent outcomes (overfiting)
F.Results: Do not save efforts on tools that facilitate understanding and use of the prediction/prescription models
Un ejemplo práctico con: Predictive Quality: Plastic Injection
Success Stories: KPIs
Lessons Learnt:
- - Define the target, question to answer
- - Data availability – quality
- - Operation accuracy
- - Interoperability
- - ROI – OEE – TCO – TPM
- - Models usability
- - Cultural barriers
The Pathway:
- Map your Digital Strategy
- Create initial Pilot Projects
- Define the capabilities you need
- Become a virtuoso in data analytics
- Transform into a data driven company
- Actively plan an ecosystem approach
Tweet
No hay comentarios:
Publicar un comentario